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Estimating Disease Prevalence in a Bayesian Framework
Using Probabilistic Constraints
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Abstract: Studies sometimes estimate the prevalence of a disease
from the results of one or more diagnostic tests that are applied to
individuals of unknown disease status. This approach invariably
means that, in the absence of a gold standard and without external
constraints, more parameters must be estimated than the data permit.
Two assumptions are regularly made in the literature, namely that
the test characteristics (sensitivity and specificity) are constant over
populations and the tests are conditionally independent given the
true disease status. These assumptions have been criticized recently as
being unrealistic. Nevertheless, to estimate the prevalence, some restric-
tions on the parameter estimates need to be imposed. We consider 2
types of restrictions: deterministic and probabilistic restrictions, the
latter arising in a Bayesian framework when expert knowledge is
available. Furthermore, we consider 2 possible parameterizations
allowing incorporation of these restrictions. The first is an extension
of the approach of Gardner et al and Dendukuri and Joseph to more
than 2 diagnostic tests and assuming conditional dependence. We
argue that this system of equations is difficult to combine with
expert opinions. The second approach, based on conditional proba-
bilities, looks more promising, and we develop this approach in a
Bayesian context. To evaluate the combination of data with the
(deterministic and probabilistic) constraints, we apply the recently
developed Deviance Information Criterion and effective number of
parameters estimated (pD) together with an appropriate Bayesian P
value. We illustrate our approach using data collected in a study on
the prevalence of porcine cysticercosis with verification from exter-
nal data.

(Epidemiology 2006;17: 145–153)

Diagnostic tests form an essential part of all disciplines of
epidemiology, providing an estimate of the true preva-

lence of the disease, infection, or condition.

Suppose that D� (D�) indicates that a subject is dis-
eased (disease-free) and T� (T�) indicates a positive (nega-
tive) result on a diagnostic test T. In the presence of a gold
standard, the number of diseased subjects (nD�) and disease-
free subjects (nD�) are known (Table 1). A gold standard can
be a diagnostic test with both test sensitivity and test speci-
ficity equal to one, or (for example) an experiment in which
a proportion of the subjects are artificially infected. The
columns “diseased” and “disease-free” in Table 1 represent
this situation and constitute the so-called full table, ie, the
table in which the distinction between the 2 infection status
categories can be made.

From Table 1, sensitivity (Se) and specificity (Sp) of
the test are estimable by nT��D�/nD� and nT� �D� /nD� , respec-
tively. On the other hand, in a field observation only the
probability of a positive test result can be directly estimated,
ie, P�T�� � nT�/n (the apparent prevalence). The column
“Total” in Table 1 is actually the marginal or collapsed table
over the diseased and disease-free subjects and represents this
situation. When Se and Sp are known, the true prevalence
P�D�� can be estimated using the following expression1:

P�D�� �
P�T�� � Sp � 1

Se � Sp � 1
(1)

Unfortunately, Se and Sp are rarely known exactly and must
be estimated from data. Hence, we need to take into account
the sampling variability with which the prevalence is esti-
mated, which could be done using the approach of Rogan and
Gladen.1

Some traditional textbooks on diagnostic testing still
refer to the test sensitivity and specificity as values that are
intrinsic to the diagnostic test, ie, constant and universally
applicable.2,3 Our own experience (and that of others) indi-
cates that both test sensitivity and specificity vary with
external factors.4–8 Consequently, test sensitivity and speci-
ficity, as traditionally defined, are purely theoretical con-
cepts determined in the population used to validate the test.
Therefore, when using a diagnostic test in the population of
interest, the characteristics of that population must be used to
get an improved estimate of Se and Sp.7 Observe, however,
that assumptions of constancy of Se and Sp over different
populations is still being made.9

For a long time, it was assumed that 2 (or more) diagnos-
tic tests are conditionally independent on the disease status,10–12

for example, P�T1
� � T2

� �D�� � P�T1
� �D�� P�T2

� �D��.
When the 2 diagnostic tests have a similar biologic basis, as
is often the case, the conditional independence assumption is
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untenable. Toft et al13 review the possible pitfalls when using
the Hui-Walter paradigm in real life, particularly the prob-
lems encountered when trying to stratify the population into
2 or more subpopulations with different true prevalence but
constant test characteristics.

When these 2 simplifying assumptions cannot be made,
estimation of the true prevalence either becomes impossible or
requires extra information added to the estimation process.
Indeed, when h tests are applied to each individual, 2h�1 � 1
parameters must be estimated. These parameters are the true
prevalence (one parameter), the test sensitivities (h parameters),
the test specificities (h parameters), and

2�
i�2

h

� hi � � 2�2h � h � 1� � 2h�1 � 2h � 2

parameters describing the dependence of the h tests given the
true disease status of the subject. Yet only 2h � 1 parameters
can be estimated, because only data from the collapsed table
(over disease status) are available. Consequently, the true
prevalence of the disease cannot be estimated if no con-
straints are imposed on the parameters. The most popular
constraint has been to assume conditional independence.

Table 2 shows the maximum number of parameters that
can be estimated and the number of parameters that need to
be estimated as a function of the number of diagnostic tests,

as well as the number of parameters to be estimated given
conditional independence of the tests.

In particular, Table 2 indicates that, under condi-
tional independence, parameters can be estimated for h � 3,
whereas for h � 4, the number of estimable parameters
actually exceeds the number of parameters to estimate.

Estimating the true prevalence thus becomes a matter of
adding constraints on the parameters. These constraints must
come from external sources, eg, previous similar studies,
expert opinion, and so on. Hence, the estimated true prevalence
and test characteristics will be the result of a combination of the
data (test results) and the external information on these test
characteristics, which is the best that can be obtained. Conse-
quently, several authors have suggested a Bayesian approach
to incorporate this external information by specifying prior
distributions on the parameters obtained from eliciting the
opinion of experts.14,15 Most often, prior knowledge on sen-
sitivity and specificity is incorporated. Unfortunately, in prac-
tice, experts often do not have and cannot have (see, for
example, nonconstant sensitivity and specificity) a clearcut
opinion on these test characteristics. As a result, the experts’
opinions will often be in conflict with the actually observed
data. Of course, the Bayesian framework allows more diffuse
prior distributions, but this will, in our context, often render
the parameters inestimable. In this article, we show that, if
possible, prior information on conditional probabilities is
easier to specify.

To verify whether the prior information is in conflict
with the test results, the recently developed deviance infor-
mation criterion (DIC)16 and an appropriate Bayesian P value
can be used.17 To quantify the impact of the constraints, the
effective number of estimated parameters (pD) of the model
can be calculated.16

In the next section, we discuss 2 parameterizations to
model conditional dependence. We then distinguish between
deterministic and probabilistic constraints and show that the
number of parameters effectively estimated (pD) can be used
to quantify the effect of these constraints on the number of
effectively estimated parameters. In the next section, we
indicate that DIC and an appropriate Bayesian P value can
pinpoint a conflict between the prior information and the test
results. We then examine the behavior of DIC, pD, and the
Bayesian P value using a theoretical dataset. Finally, we
apply one of the models developed here to field data. A
discussion of our approach and the results follows in the last
section.

Markov Chain Monte Carlo (MCMC) estimations were
carried out in WinBUGS 1.4.18 Additional calculations were
performed in R19 making extensive use of the “bugs” func-
tion17 posted on the web.20 The software developed for the
evaluation of DIC, pD, and the Bayesian P value can be
downloaded.21

MODELING CONDITIONAL DEPENDENCE
BETWEEN TESTS THROUGH CONDITIONAL

PROBABILITIES
For the situations in which 2 diagnostic tests are applied

to all subjects, Gardner et al22 and Dendukuri and Joseph23

TABLE 1. Two-by-Two Contingency Table When Testing n
Subjects for Disease D With One Diagnostic Test T

Diseased Disease-Free Total

� Test result nT��D� nT��D� nT�

� Test result nT��D� nT��D� nT�

Total nD� nD� n

D� (D�) indicates that the subject is (is not) diseased; T� (T�), a positive
(negative) result with test T.

TABLE 2. Maximum Number of Estimable Parameters and
Number of Parameters to Be Estimated in the Absence of
Conditional Independence and Under Conditional
Independence as a Function of the Number of Tests per
Subject

Number
of Tests

Maximum
Number of
Estimable

Parameters

Parameters to be
Estimated Under

Conditional
Dependence

Parameters to Be
Estimated Under

Conditional
Independence

1 1 3 3

2 3 7 5

3 7 15 7

4 15 31 9

5 31 63 11

h 2h � 1 2h�1 � 1 2h � 1
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calculated the probabilities of the different outcomes as a
function of test sensitivities, test specificities, and covari-
ances. Furthermore, these authors suggest combining prior
information on these parameters with the test results in a
Bayesian manner. Their results can be expanded to more than
2 tests.24 However, the prior distributions for the covariances
(ie, generalized beta distributions) are quite difficult to elicit
from experts, because they cannot be related to real-life situa-
tions. Although not well recognized in the literature, this is
equally true for the sensitivity parameters, the reason being that
the sensitivity of a diagnostic test needs to be determined in
experimental conditions (and hence also quite distinct from
real-life settings) on a small number of subjects. In contrast, the
specificity of a test can be determined somewhat more easily in
a population that is known to be disease-free.

Eliciting information from experts on the conditional
performance of one test given the results of another test could
be much easier in certain cases. For instance, a question such
as “What is the probability that a subject tests positively in
test 2 given that the subject is diseased and has tested
positively in test 1?” relates the characteristics of 2 tests
applied on the same subject. This can be easier to answer
because the experts usually have one or more so-called
reference tests (very often with a very high specificity) and
know the performance of other tests in relation to the refer-
ence test in the infected and uninfected subpopulations.

Model (2), given by

P�T 1
i1 � � � � � T h

ih�

� P�D���
t�1

h

��1 � it� � ��1�itP �Tt
� | D� �

t� | t � 1

t � 1

T t�
it�

�	

� �1 � P�D� �	�
t � 1

h

�it � ��1�itP �Tt
� | D� �

t� | t � 1

t � 1

Tt�
it��	, (2)

expresses the cell probabilities of the collapsed 2(h�1) table
(hence of a 2h table) in terms of the prevalence of the disease,
the sensitivity and specificity of the first test, and conditional
probabilities. In Appendix A1.1 (available with the online
version of this article), the different conditional probabilities
are listed in a hierarchical fashion: parameters �1–�3 are used
when only a single test is applied, �1–�7 are used for 2 tests,
�1–�15 for 3 tests, and �1–�31 for 4 tests. In Appendix A1.2
(available with the online version of this article), expressions
are given to calculate the prevalence and the test character-
istics from the parameters defined in A1.1. Finally, in Ap-
pendix A1.3 (available with the online version of this article),
the equations are given to calculate the cell probabilities of the
different test result combinations when h 
 4. When fewer than
4 tests are used, the probabilities can be extracted from these
equations by dropping excess terms, eg, P(111) 
 �1 �2 �4 �8 �
(1 � �1)(1 � �3)(1 � �7)(1 � �15).

DETERMINISTIC VERSUS PROBABILISTIC
CONSTRAINTS AND THE USE OF pD

Constraints on the parameters need to be imposed to
estimate the prevalence and the test characteristics using
equation 2. We classify these constraints into 2 types: deter-
ministic and probabilistic. Setting Se (or Sp) to a particular
value is an example of a deterministic constraint, as is the
assumption of conditional independence. Specifying a prior
distribution for a parameter or for a function of parameters
(like a contrast) is an example of a probabilistic constraint in
a Bayesian setting.

In a frequentist context, m independent deterministic
constraints reduce the number of parameters to estimate
exactly by m. For instance, when using 2 tests (h 
 2), the
assumption of conditional independence between the tests
reduces the number of parameters to be estimated from 7 to
5 (see Table 2). When fixing the specificity of one test to say
one, the number of parameters to estimate is further reduced
by one. In a Bayesian context, things are more difficult
because it is not immediately clear what impact a probabilis-
tic constraint has on the number of parameters to estimate. In
this context, Spiegelhalter et al16 proposed to measure the
effective number of estimated parameters in a fitted statistical
model by pD. This measure is not an integer any more, even
for a deterministic constraint, because it is calculated as the
difference of the posterior mean of the deviance and the
deviance evaluated in the posterior mean. More details are
given in the next section.

MEASURING THE DISCORDANCE OF THE
PRIOR INFORMATION WITH THE OBSERVED

TEST RESULTS
As described in the introduction, experts have difficulty

expressing their prior knowledge in quantitative terms (sen-
sitivity and specificity). Our experience shows that often the
prior information is in conflict with the actual observed data.
In the context of diagnostic testing, this is evidently a crucial
handicap. Several authors have addressed this problem in the
statistical literature,25 but it is not immediately clear how the
proposed measures for discordance can be implemented in
our context. Here, 2 measures are proposed. The first one is
based on a Bayesian goodness-of-fit test leading to a Bayes-
ian P value. The second one uses the recently introduced
deviance information criterion (DIC).16 Both measures are
reviewed here in the context of analyzing collapsed tables of
diagnostic test data in a Bayesian manner. Although not
absolutely necessary, we assume that Bayesian estimation is
done through MCMC sampling and reference is made to the
WinBUGS software. A detailed account of the computation
of both measures is given in Appendix 2 (available with the
online version of this article).

BEHAVIOR OF DEVIANCE INFORMATION
CRITERION, pD, AND BAYESIAN P VALUE

Deviance Information Criterion and pD
In this section, we discuss the performance of DIC and

pD in the context of a possibly overspecified multinomial
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model. That is, we look at the behavior of DIC and pD when
q � (k � 1) and we focus on model (2). When q � (k � 1),
we expect pD � k � 1 � q. Unfortunately, this will not
necessarily be the case for model (2) because this model is
not log-concave in its parameters. Things become worse
when q � (k � 1) because then the log-likelihood must be
flat around the maximum likelihood estimate if no constraints
have been imposed. However, if the multinomial model is
parameterized in its multinomial probabilities, ie, in � i (i 

1, . . . , k � 1), then for all cases, the log-likelihood will be
concave in its parameters. Consequently, we suggest evalu-
ating DIC and pD always in the posterior mean of � i (i 

1, . . . , k � 1). However, there is one remaining problem,
namely that pD (if based on the multinomial probabilities) is
always smaller than k � 1 regardless of whether the model
has been overspecified. To have an idea of when the model
has been overspecified, we suggest calculating pD also using
the posterior means of its parameters, ie, for model (2) on the
posterior means of the parameters �1 to �31 for h 
 4. Empiric
evidence shows that without sufficient constraints in that
case, pD is negative, resulting in a diagnostic tool that can
indicate whether all our parameters are estimable.

To exemplify our reasoning in the previous paragraph,
we take the case of h 
 1, which is when there is only one
diagnostic test and the multinomial model contains only 2
cells, ie, �1 � P�T1

� � and �2 � P�T1
� �. In this case, �1 


�1�2 � (1 � �1)(1 � �3) and �2 
 �1(1 � �2) � (1 � �1)�3.
The log-likelihood is not concave in �1, �2, and �3 but clearly
it is in �1 (we can neglect �2 because it is 1 � �1). Without
any constraints on �1, �2, and �3, the multinomial parameter
�1 will vary freely, thus pD � 1 if based on the posterior
mean of �1. However, experience showed that pD becomes
negative when based on �1, �2, and �3. When putting con-
straints on �1, �2, and �3, nothing will change if these
constraints do not put a constraint on the multinomial param-
eter �1, and so pD will stay around 1. Only when the
constraints on �1, �2, and �3 affect the mobility of the
multinomial parameter, pD (based on �1) will shrink. On
the other hand, pD based on �1, �2, and �3 will be negative if
the constraints were not sufficient to constraint �1. A com-
parison of the 2 pD-values will immediately reveal whether
the parameters �1, �2, and �3 are estimable.

From a practical point of view, we can conclude in
general:

• DIC and pD should be evaluated in the posterior mean of
the multinomial probabilities and in the posterior mean of
the parameters of the model. In WinBUGS language, the
latter are called “parent nodes.” Thus, we need 2 evalua-
tions of DIC and pD, one within WinBUGS and one outside
WinBUGS;

• Only when the 2 pD-values are smaller or equal to 2h � 1
is there hope that the prevalence of the disease can be
estimated; and

• Models with a high value for DIC indicate a bad model in
a Bayesian sense, meaning that either the model (likeli-
hood) part is badly specified or the prior distributions are
not compatible with the data. Consequently, when compar-
ing different prior knowledge combined with the same

likelihood, prior knowledge that is in conflict with the
observed data is reflected in a high value for DIC.

Bayesian P Value
When the model has been overspecified, the Bayesian P

value (as defined in our approach) will be around 0.50. The
reason for this is that the posterior probability for the multi-
nomial probabilities will be flat. However, as shown in
Appendix 3 (available with the online version of this article),
this test quantity is a useful indicator for the actual model fit
because the Bayesian P value tends to zero if there is a good
model fit and to one if the fit is poor.

Modeling Exercise
We now examine the behavior of DIC, pD, and the

Bayesian P value using theoretical frequencies.
The prevalence of the disease is taken equal to 0.5.

Furthermore, we assume 2 diagnostic tests T1 and T2 (h 
 2),
both with specificity equal to 1, ie, with no false-positive
results. The sensitivity of T1 equals 0.60 and the sensitivity of
test T2 equals 0.70, but there is conditional dependence, ie, in
terms of the parameters in Appendix 1, �4 and �5 are not
equal. In summary: �1 
 0.50, �2 
 0.60, �3 
 1, �4 
 0.90,
�5 
 0.40, �6 
 1, and �7 
 1. This yields the following
theoretical probabilities for the 22 collapsed contingency
table: P(00) 
 0.62, P(01) 
 0.08, P(10) 
 0.03, and P(11) 

0.27. For a study of N 
 1000, the expected cell frequencies
are therefore r1 
 620, r2 
 80, r3 
 30, and r4 
 270 and
the expected number of diseased subjects is equal to ND� 

500. We test the following models on this dataset:

• M1: no prior constraints;
• M2: specificity of T1 
 1, specificity of T2 
 1;
• M3: specificity of T1 
 1, specificity of T2 
 1, sensitivity of

T1 constrained uniformly to interval �0.5, 0.7	 and the sensi-
tivity of T2 constrained by a uniform prior on �4 to interval
�0.8, 1	 and a uniform prior on �5 to interval �0.3, 0.5	;

• M4: specificity of T1 
 1, specificity of T2 
 1, the sensitiv-
ity of T1 severely constrained uniformly to interval �0.5999,
0.6001	 and the sensitivity of T2 severely constrained by a
uniform prior on �4 to interval �0.8999, 0.9001	 and a uniform
prior on �5 to interval �0.3999, 0.4001	;

• M5: constraints on specificity and sensitivity of T1 and T2 

1 as in M4. Additionally, the prevalence is severely con-
strained by a uniform prior on �1 to interval �0.4999, 0.5001	;

• M6: specificity of T1 
 1, specificity of T2 
 1, sensitivity
of T1 wrongly constrained by a uniform prior to interval
�0.8, 1	; and

• M7: specificity of T1 
 1, specificity of T2 
 1, the
sensitivity on T1 wrongly constrained by a uniform prior to
interval �0.8, 1	 and a wrongly positive conditional sensi-
tivity of T2 by a uniform prior to interval �0.2, 0.4	.

In the next section, these models are applied to the 22

contingency table of the expected frequencies. This exercise
further exemplifies our reasoning in previous sections.

RESULTS AND DISCUSSION
The results of applying models M1 to M7 are summa-

rized in Table 3. Note that DIC and pD calculated from the
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multinomial probabilities for models M1, M2, and M3 differ
only by random MCMC sampling variation.

In models M1 and M2, the constraints are not sufficient
to estimate the parameters �1 to �7 of Appendix 1. This is
reflected by negative pD-values estimated from the parent
nodes. Observe that pD as calculated from the multinomial
probabilities is practically equal to 3, the true value. Further-
more, for both models, the Bayesian P value is about 0.5,
indicating no particular problem. Clearly, the prevalence of
the disease is overestimated for both models. The constraint
imposed on model M3 brings the parent-node pD close to 3,
indicating that now all parameters are estimable. The preva-
lence is well estimated now, and the estimated sensitivities
are close to their true values. In models M4 and M5, the
constraints are made more stringent, but in the correct man-
ner. Model M5 has the lowest DIC value of the 2, with the
lowest pD-value almost equal to zero. This implies that
parameters are set to their correct values. Indeed, the Bayes-
ian P value indicates a nearly perfect but nonstochastic
model. Furthermore, the prevalence and the sensitivities are
basically equal to their true values. In models M6 and M7,
enough constraints have been put on the parameters, because
for each model, the 2 corresponding pD-values are almost
equal to each other. However, the Bayesian P values indicate
badly fitted models, which is also reflected in a badly esti-
mated prevalence and sensitivities. (Of course, this would not
be recognized in practice by the user.)

APPLICATION OF MODEL (2) TO FIELD DATA

The Problem and the Data
Porcine cysticercosis is a major problem in many coun-

tries, causing a debilitating and potentially lethal zoono-
sis.26,27 Relatively accurate estimates of prevalence of cys-
ticercae in fattening pigs are essential to appraise the risk for
human infection. Several diagnostic tests are used, but none
is a gold standard and exact information about test sensitivity
and specificity is unavailable. A total of 868 traditionally kept
pigs, offered for sale on a market near Lusaka (Zambia), were
tested with the following 4 diagnostic tests: palpation of the
tongue (TONG), visual inspection of the carcass (VISUAL), an

antigen enzyme-linked immunosorbent assay (Ag-ELISA), and
an antibody enzyme-linked immunosorbent assay (Ab-ELISA).
A summary of the results is shown in Table 4.28

The data in Table 4 were used to estimate the preva-
lence and the test characteristics under equation (2) and
assuming a variety of expert opinions.

Prior Information
“Expert” opinion in the broadest possible sense was

used to specify prior information on the diagnostic test
characteristics. In this section, we call a model the combina-
tion of equation (2) with a particular set of deterministic and
probabilistic (prior information) constraints. Some of the
models were constructed from general principles only. For

TABLE 3. Results of the Different Models Using the Theoretical Data Presented in the Text

Model
Bayesian
P Value

Parent Nodes Multinomial

Prev

Test 1 Test 2

DIC pD DIC pD Se Sp Se Sp

1 0.4916 �90.177 �111.609 24.283 2.936 0.5253 0.3229 1 0.3957 1

2 0.4930 8.303 �13.065 24.342 2.952 0.5688 0.5732 1 0.6680 1

3 0.4793 24.176 2.873 24.279 2.917 0.5058 0.5956 1 0.6939 1

4 0.1852 20.407 0.990 20.471 1.021 0.5006 0.6000 1 0.7000 1

5 0.0004 18.426 0.000 18.445 0.007 0.5000 0.6000 1 0.7000 1

6 0.7000 25.524 2.351 25.468 2.338 0.3850 0.8106 1 0.9049 1

7 1.0000 355.977 1.406 355.899 1.382 0.3848 0.8103 1 0.5006 1

For each model, the posterior mean of the parameters are given. The column “Parent Nodes” indicates that the calculations were done within WinBUGS and are based on the
parameters �1 to �7 in Appendix 1. The column “Multinomial” indicates that the calculations were done outside WinBUGS and are based on the multinomial probabilities.

TABLE 4. Test Results of 868 Traditional Zambian Pigs
Subjected to 4 Diagnostic Tests

TONG VISUAL Ag-ELISA Ab-ELISA Number of Pigs

0 0 0 0 326

0 0 0 1 42

0 0 1 0 281

0 0 1 1 95

0 1 0 0 0

0 1 0 1 0

0 1 1 0 5

0 1 1 1 4

1 0 0 0 1

1 0 0 1 0

1 0 1 0 2

1 0 1 1 0

1 1 0 0 2

1 1 0 1 1

1 1 1 0 35

1 1 1 1 74

0 indicates negative test result; 1, positive test result; TONG, tongue palpation;
VISUAL, visual carcass inspection; Ag-ELISA, antigen ELISA; Ab-ELISA, antibody
ELISA.
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instance, in model M1, the “expert” opinion states that both
test sensitivity and specificity can take any value between
zero and one and that the 4 tests are mutually conditionally
independent. For the other models, proper expert opinion was
used. This expert opinion was obtained from helminthologists
at the Institute of Tropical Medicine (Antwerp) and at Ghent
University. They provided upper and lower limits for the
various test sensitivity and specificity values. From biologic
principles, they also concluded that the tests TONG and
VISUAL are not independent in a truly infected population.

A positive test result for TONG is nearly always accompa-
nied by a positive result for VISUAL, whereas a negative
TONG test nearly invariably means a negative VISUAL test.

The prior distributions for sensitivity and specificity are
taken here as uniform distributions (beta�1, 1	 truncated on
the interval �a, b	, with a being the under limit and b the
upper limit as specified by the experts). These uniform
distributions can be replaced by beta distributions (beta�	, 
	,
where 	 and 
 are determined such that, say, 95% of the
probability mass is located in �a, b	).

TABLE 5. Parameters to Be Estimated in the 7 Models That Were Constructed From
the Available ‘Expert’ Opinion

M1* M2
†

M3
‡

M4 M5 M6 M7

�1 0–1 0–1 0–1 0–1 0–1 0–1 0–1

�2 0–1 0–1 0.3–0.7 0–1 0–1 0–1 0–1

�3 0–1 1 1 0–1 1 1 1

�4 0–1 0–1 0.8–1 0–1 0–1 0–1 0.9–1

�5 
 �4 
 �4 
 �4 0–1 0–1 0–1 0–0.1

�6 0–1 1 1 0–1 1 1 1

�7 
 �6 — — 0–1 — — —

�8 0–1 0–1 0–1 0–1 0–1 0–1 0–1

�9 
 �8 
 �8 
 �8 0–1 0–1 0–1 0–1

�10 
 �8 
 �8 
 �8 0–1 0–1 0–1 0–1

�11 
 �8 
 �8 
 �8 0–1 0–1 0–1 0–1

�12 0–1 0–1 0.95–1 0–1 0–1 0.9–1 0.9–1

�13 
 �12 — — 0–1 — — —

�14 
 �12 — — 0–1 — — —

�15 
 �12 — — 0–1 — — —

�16 0–1 0–1 0.92–1 0–1 0–1 0–1 0–1

�17 
 �16 
 �16 
 �16 0–1 0–1 0–1 0–1

�18 
 �16 
 �16 
 �16 0–1 0–1 0–1 0–1

�19 
 �16 
 �16 
 �16 0–1 0–1 0–1 0–1

�20 
 �16 
 �16 
 �16 0–1 0–1 0–1 0–1

�21 
 �16 
 �16 
 �16 0–1 0–1 0–1 0–1

�22 
 �16 
 �16 
 �16 0–1 0–1 0–1 0–1

�23 
 �16 
 �16 
 �16 0–1 0–1 0–1 0–1

�24 0–1 0–1 0.98–1 0–1 0–1 0.9–1 0.9–1

�25 
 �24 — — 0–1 0–1 0–1 0–1

�26 
 �24 — — 0–1 — — —

�27 
 �24 — — 0–1 — — —

�28 
 �24 — — 0–1 — — —

�29 
 �24 — — 0–1 — — —

�30 
 �24 — — 0–1 — — —

�31 
 �24 — — 0–1 — — —

*Equivalent to TONG VISUAL Ag-ELISA Ab-ELISA
Sensitivity 0–1 0–1 0–1 0–1
Specificity 0–1 0–1 0–1 0–1
†Equivalent to TONG VISUAL Ag-ELISA Ab-ELISA
Sensitivity 0–1 0–1 0–1 0–1
Specificity 1 1 0–1 0–1
‡Equivalent to TONG VISUAL Ag-ELISA Ab-ELISA
Sensitivity 0.3–0.7 0.8–1 0–1 0.92–1
Specificity 11 1 0.95–1 0.98–1
�1 . . . �31, see Appendix 1 for the parameter definition; a-b denotes that a is the lower limit and b is the upper limit of

the parameter interval; 
 �a	, value equal to parameter a in brackets; —, not to be estimated.
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Models
Table 5 lists the parameters to be estimated in each of

the 7 models (M1 to M7) using all 4 tests that were con-
structed using the available “expert” opinion together with
the limits that were applied to each parameter. The starting
model (M1) assumes conditional independence of the 4 tests
and no prior information on any of the diagnostic test char-
acteristics (ie, test sensitivities and specificities have uniform
prior distributions on (�0, 1	). The model M2 still assumes
conditional independence and fixes the specificity of TONG
test and the VISUAL test to one, but no other probability
constraints were added. The deterministic constraints on
model M1 imply that there we are estimating 9 parameters
when 15 can be estimated. For model M2, we are estimating
7 parameters with again 15 estimable parameters.

Model M3 again assumes conditional independence,
but now probabilistic constraints (inspired by the experts’
opinions) apply. At face value, there are still 7 parameters to
be estimated, but the probability constraints imply probabi-
listic relationships among the parameters and hence fewer
parameters need to be estimated. The actual number of
parameters estimated in the model should be reflected in the
value of pD.

The remaining models all considered conditional de-
pendence. When no constraints are applied, 31 parameters
need to be estimated, whereas only 15 parameters are esti-
mable in the collapsed table (see model M4). Putting the
TONG specificity and the VISUAL specificity both to one
(model M5) reduces the number of parameters to be esti-
mated to 19: conditional probabilities �3 and �6 become one
and all parameters, appearing behind (1–�3) and (1–�6), no
longer need to be estimated (ie, �7, �13, �14, �15, �26, �27, �28,
�29, �30, �31).

The number of parameters to be estimated was further
reduced by constraining both �12 and �24 to �0.9–1	 (model
M6), constraints that are moderate by most standards (a

specificity equal to 0.90 is considered a low specificity).
Finally, the conditional probabilities �4 and �5 were con-
strained to, respectively �0.9–1	 and �0–0.1	 (model M7).
The constraints applied in models M6 and M7 are of proba-
bilistic nature and hence imply that the actual number of
parameters to be estimated lies below 19. Model M6 has
between 17 and 19 parameters to be estimated. Conditional
probabilities �4 and �5, which are constrained in model M7,
reflect the expert opinion that the visual carcass inspection
result is highly associated with the result of the tongue
palpation. If the 2 tests are made identical (�4 
 1 and �5 

0), the minimum number of parameters to be estimated
becomes 6 (assuming 3 independent tests with specificity of
one test equal to one) and the actual number of parameters to
be estimated lies between 6 and 19. The listing for model M7
can be downloaded.21

RESULTS
As we expected, not all models converged. Table 6

shows the value of DIC, pD, and the Bayesian P value for
each converged model. Table 7 shows the posterior means
together with the 95% credibility intervals of the prevalence
and the test characteristics of the 4 tests.

Model M1 did not converge in WinBUGS, which is not
surprising given that symmetry yields several possible solu-
tions depending on the starting conditions: replacing sensi-
tivity by the complement of specificity, specificity by the
complement of sensitivity, and prevalence by its own com-
plement yields a symmetric solution (and there is thus an
inherent problem of identifiability). Indeed, constraining the
prevalence to either �0–0.5	 or �0.5–1	 results in convergence
and estimates for all parameters (DIC 
 63.3, pD 
 0.3).
Model M2 converged and yielded estimates for all param-
eters. The expert opinion used in model M3 did not
improve the model fit. On the contrary, DIC increased
from 97 to 945 and the Bayesian P value stayed at 1.0. The
Bayesian P values for models M2 and M3 near 1.0 suggest
a lack-of-fit, indicating that conditional independence test
does not hold. Models M4, M5, and M6 did not converge,
probably because they were overparameterized, which im-
plies that the constraints were not strict enough to yield
identifiable models. Model M7 converged and yielded the
minimum DIC and an acceptable Bayesian P value of 0.48
(the Bayesian P value tended to zero when strict con-
straints were applied).

Table 6 shows the effective number of parameters
estimated. For model M7, pD 
 9.86. This illustrates that

TABLE 6. Deviance Information Criterion (DIC), Effective
Number of Parameters Estimated (pD), and Bayesian P Value
(P) for the Models That Converged

Model DIC pD P

M2 97.1 6.52 1.00

M3 925.1 2.89 1.00

M7 70.3 9.86 0.48

TABLE 7. Posterior Mean for the Prevalence and the Test Characteristics Together With the 95% Credibility Interval
(in parentheses) for the 3 Models That Converged

Model Prev

TONG VISUAL Ag-ELISA Ab-ELISA

Se Sp Se Sp Se Sp Se Sp

M2 0.144 (0.12–0.17) 0.918 (0.86–0.96) 1.000 0.965 (0.93–0.99) 1.000 0.961 (0.92–0.99) 0.495 (0.46–0.53) 0.635 (0.55–0.72) 0.815 (0.79–0.84)

M3 0.246 (0.22–0.28) 0.540 (0.47–0.61) 1.000 0.803 (0.80–0.81) 1.000 0.973 (0.95–0.99) 0.900 (0.90–0.901) 0.903 (0.90–0.91) 0.952 (0.95–0.96)

M7 0.642 (0.54–0.91) 0.210 (0.14–0.26) 1.000 0.221 (0.15–0.27) 1.000 0.867 (0.62–0.98) 0.947 (0.90–0.997) 0.358 (0.26–0.41) 0.917 (0.85–0.99)
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the 6 constraints (deterministic and probabilistic) on the 20
parameters to estimate have more effect than one might
initially think. Indeed, model M7 is based on model (2),
which is parameterized in a hierarchical manner with con-
ditional probabilities. Constraints on lower-order conditional
probabilities must have an effect on higher-order conditional
probabilities.

Taking into account conditional dependence between
the various diagnostic tests considerably reduces the esti-
mated test sensitivity of both tongue palpation and visual
carcass inspection and, most importantly, results in a much
higher estimate of the true prevalence (Table 7).

External Model Validation
Additional data became available later, allowing external

validation of the selected model. Namely, an additional 65 pigs
were subjected to the 4 tests and completely dissected out on
slaughter (gold standard), permitting the ascertainment of the
true infection status and thus allowing estimation of the true
prevalence as well as the test characteristics. The true prevalence
was estimated as 0.48 (31/65) and the estimates of the test
characteristics are shown in Table 8.

Clearly, model M7 (Table 7) resulted in parameter
estimates that are reasonably close to those obtained from the
experimental dissections (Table 8).

DISCUSSION
Analysis of data generated by the application of one or

more diagnostic tests in a specified population invariably entails
“overfitting” of the data. The number of parameters that have to
be estimated always exceeds the number that can be estimated.
This can be resolved only by simplifying the model (determin-
istic constraints) or through the inclusion of expert opinion
(probabilistic constraints). In the latter case, only a Bayesian
approach can incorporate that information. Observe that the
Bayesian approach is slowly becoming accepted by the medical
community. Indeed, everyday practice is a reflection of the
Bayesian philosophy. When a test is used within a certain
population, it is implicitly assumed that the values of sensitivity
and specificity, as supplied by the manufacturer of the test kit,
apply to the population studied; this prior knowledge of the test
characteristics is given so much credence that the test results are
no longer needed to estimate Se and Sp, allowing estimation of
the true prevalence.

The model developed on the basis of conditional prob-
abilities allows formalization of this expert opinion, whatever
form it might take. Anything from genuine information ac-

quired through high-quality data to a personal opinion can be
quantified and fed as a prior belief probability distribution
into the model. Whether it is easy to specify a prior opinion
on a conditional probability will depend on the actual tests
involved, but we argue that it is practically impossible to give
reliable prior information on the sensitivity of a diagnostic
test. The user can monitor the effect of this prior belief on the
results, and it may be easier for the user to appreciate the fact
that the actual interpretation of the test results is conditional
on the prior opinion. The effect of imposing deterministic or
probabilistic constraints is reflected in the value of pD and can
thus be evaluated.

Our approach is in sharp contrast to the approach of
Pouillot et al29 in which conditional independence is accepted
when a specific test shows no indication against this assump-
tion. However, not much is known about the power of this
test. Instead, we suggest working under the assumption of
conditional dependence and applying a sensitivity analysis on
the estimation of the prevalence and the test characteristics by
varying the prior distributions.

The results of the different scenarios applied to the
present example clearly show that the estimate of the infec-
tion prevalence depends on the model chosen, and that widely
varying estimates can be obtained. It is important that users
understand this and realize that the expert opinion has a great
impact on the final estimation of the prevalence. However, as
the simulation and the real-life study show, DIC, pD, and the
Bayesian P value are useful in the process of selecting a
model. We must, however, warn the user that the information
in the collapsed table over the disease groups contains inher-
ently little information on the prevalence and the test char-
acteristics. Finally, the present example shows that “classic”
testing with one or more tests, assuming constancy of test
parameters and independence of tests, may grossly underes-
timate true prevalence and thus, in our case, the seriousness
of the zoonosis.
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