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A B S T R A C T

We describe analyses to estimate the global burden of disease associated with methylmercury (MeHg). An in-
telligence quotient< 70, indicating intellectual disability (ID), was selected as the critical disease, maternal hair
Hg concentration during pregnancy selected as the critical exposure biomarker, and a dose-effect relationship of
an 0.18 point IQ reduction per µg/g increase in maternal hair Hg was assumed, based on a meta-analysis. A
systematic review was conducted to obtain country-specific data on the distribution of maternal hair Hg con-
centrations. The country-specific incidence of MeHg-associated ID was calculated, and a random effects model
was used to impute the incidence for countries for which no exposure data could be found. The global burden of
MeHg-associated ID was quantified in terms of Disability-Adjusted Life Years (DALYs) using the World Health
Organization (WHO) Global Health Estimates methodology, and presented by 14 subregions. In 2015, the global
total for MeHg-associated cases of ID was 226,655; 210,074 of these cases (93%) were mild cases of ID. The
highest rate of ID (6 cases per 100,000 population) was found in the Americas D subregion. The global DALY
estimate was 1,963,869. The Western Pacific B subregion contributed the most to this total (696,417), although
the Americas D subregion had the greatest rate (54 DALYs per 100,000 population). The burden of disease
associated with MeHg is therefore highly subregion-dependent even in areas that are geographically related. The
priority given to reducing this burden can therefore be expected to vary considerably by subregion depending on
other health needs.

1. Introduction

The neurodevelopmental toxicity of methylmercury (MeHg) is well-
known (Karagas et al., 2012). Neurodevelopmental toxicity is con-
sidered to be the most sensitive outcome of methylmercury exposure
and the development in utero the most sensitive period of exposure
(Joint FAO/WHO Expert Committee on Food Additives, 2007). Inges-
tion is the primary pathway of exposure, and contaminated seafood and
rice are the most important components of the diet with regard to
MeHg.

Recently, the World Health Organization (WHO) published first-
ever estimates of the global and regional burden of foodborne disease

(Havelaar et al., 2015). The study showed that the 31 considered
foodborne hazards caused 600 million illnesses, resulting in 420,000
deaths and 33 million Disability-Adjusted Life Years (DALYs). The
burden estimates for the foodborne chemicals however only revealed
the tip of the iceberg, as only three chemicals and toxins could be in-
cluded, i.e., aflatoxins, cassava cyanide, and dioxins (Gibb et al., 2015).
In this paper, we add to this work by quantifying the contribution of
exposure to MeHg to the global burden of disease, expressed as DALYs.

2. Materials and methods

Several inputs were combined to estimate the disease burden
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associated with MeHg: the target disease caused by MeHg, the critical
biomarker of exposure, the dose-effect relationship between the target
disease and the critical biomarker concentration, the distribution of the
critical biomarker concentration in the target population of each
country, the incidence of the target disease in each country, disease
features including age at onset, case fatality rate, and duration, and the
disability weight(s) associated with the disease. The rationale for the
decisions reached about each of these inputs is described in the fol-
lowing sections.

2.1. Critical disease

The evidence supporting a causal role for MeHg in human health
outcomes varies substantially across organ systems and health end-
points (World Health Organization, 2004). There is robust evidence
that children's cognitive development is the most sensitive endpoint,
and that gestation is the critical exposure window (Rice et al., 2003;
World Health Organization, 2004; ATSDR: Toxicological Profile for
Mercury, 1999). We selected loss of full-scale IQ points as the critical
endpoint with regard to MeHg toxicity. The estimation of a global
burden of disease requires that a disease or diseases be specified. For
methylmercury, the disease is “intellectual disability” (ID). To estimate
the burden of disease associated with methylmercury, we estimated the
numbers of children whose IQ scores would be expected, as a result of
prenatal MeHg exposure, to fall within the categories of intellectual
disability (ID) specified in the International Classification of Disease-
9th Revision Clinical Modification: mild (IQ 50–69), moderate (IQ
35–49), severe (IQ 20–34), and profound (IQ<20) (World Health
Organization, 2017).

2.2. Critical biomarker of exposure

Mercury has been measured in a variety of biological matrices, in-
cluding hair, blood (including cord blood), urine, and nails (toenail,
fingernail). The concentration of mercury in hair is the exposure metric
that is most frequently measured in epidemiological and surveillance
studies. Speciation studies have shown that 80–90% of the total mer-
cury in hair is MeHg (National Research Council, 2000), and most
studies report total hair mercury concentrations. We selected maternal
hair mercury concentration during pregnancy or at birth as the critical
biomarker.

2.3. Dose-effect relationship

To relate maternal hair mercury concentration to ID, we selected the
result of a meta-analysis of data from the three major prospective stu-
dies of prenatal MeHg exposure and children's cognitive development
(Faroe Islands, Seychelles Islands, New Zealand studies) reported by
Axelrad et al. (2007). This analysis estimated that a child's IQ score
declines 0.18 points (95% CI: -0.38, -0.01) for each µg/g increase in
maternal hair mercury concentration during pregnancy.

2.4. Country-specific estimates of MeHg exposure

We conducted a systematic review in order to identify studies that
provide data on the distributions of the mercury biomarker con-
centrations in different countries or regions of countries (see Bellinger
et al., 2016, for details of the search process). In the 305 papers iden-
tified, mercury biomarker data (hair or blood) were reported for 80
countries.

We abstracted the following information from each paper: country,
the population sampled (e.g., miners, residents near a mining site,
coastal, urban/rural, subsistence fisherman, general population, etc.),
the biological matrix measured (hair, blood, cord blood), total number
of individuals sampled, age, sex, mercury biomarker concentrations
(including measure of central tendency, dispersion, and range, if

available). (See Supplementary Tables in Bellinger et al., 2016 for the
raw data).

For countries for which multiple studies provided information, one
study was chosen as most representative. We favored studies with the
following characteristics:

1) a nationally-representative sample
2) described how the study sample was drawn from the base popula-

tion
3) the study sample was not occupationally-exposed to mercury, did

not live in an area likely to be polluted with mercury (i.e., a region
of artisanal gold mining), and was not selected based on clinical
status, i.e., a disease potentially related to MeHg exposure)

4) measured hair mercury concentration; if blood mercury was mea-
sured but the study was selected, on the basis of other character-
istics, as the most representative study, hair mercury concentration
was estimated from blood mercury concentration using a conversion
factor (250:1) (ATSDR: Toxicological Profile for Mercury, 1999). If
cord blood mercury concentration was measured, it was first
transformed to maternal blood concentration using a conversion
factor (1.7:1) (Stern and Smith, 2003)

5) provided information about both the central tendency and varia-
bility of the biomarker distribution (e.g., standard deviation, inter-
quartile range, centile values, etc.)

6) provided information specifically about prenatal mercury exposure.
Priority of subgroups in terms of relevance to prenatal exposure to
mercury: pregnant women, women of reproductive age, adult
women, adult males, children

2.5. Country-specific incidence of intellectual disability

In the absence of methylmercury exposure, we assume that IQ
scores in each country have a mean of 100 and a standard deviation of
15. Assuming that 0.18 IQ points are lost per μg/g increase in maternal
hair mercury during pregnancy, we used the distribution of hair mer-
cury concentrations to calculate the percentages of children in each
country whose IQ scores would be shifted, as a result of MeHg exposure,
into the four categories of ID (i.e., mild, moderate, severe, profound).
For most countries, limited data were available on the hair mercury
distribution. Therefore, it was assumed that hair mercury levels were
normally distributed, and the Microsoft Excel function NORMDIST was
used to determine the proportion of the population with hair mercury
levels above specified levels based on the reported mean and standard
deviation (Poulin and Gibb, 2008). Finally, the incidences of different
levels of severity of MeHg-associated ID in a country (i.e., number per
100,000 births) were calculated using birth rate data (www.cia.gov/
library/publications/the-world-factbook/rankorder/2054/html). The
Supplementary Tables in Bellinger et al. (2016) present the data used to
estimate incidence rates.

In line with the WHO estimates of the global burden of foodborne
disease, we aggregated our country-level estimates into global, re-
gional, and subregional estimates. There are six WHO regions, in-
cluding the African Region (AFR), the Region of the Americas (AMR),
the Eastern Mediterranean Region (EMR), the European Region (EUR),
the South-East Asia Region (SEAR), and the Western Pacific Region
(WPR). Countries within a region are further classified into subregions
by mortality levels: A: Very low child, very low adult mortality; B. Low
child, low adult mortality; C. Low child, high adult mortality; D High
child, high adult mortality; and E: High child, very high adult mortality
(Ezzati et al., 2002). The countries included in each subregion are
provided in Devleesschauwer et al. (2015).

2.6. Imputation

For countries for which no studies could be found that provided
information on population MeHg biomarker concentrations and for
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which an incidence rate of MeHg-associated ID could not be calculated,
a log-Normal random effects model was used to impute it, as described
by Devleesschauwer et al. (2015). Briefly, the model was fitted to the
available data, and incidence values for countries with no data were
imputed based on the resulting posterior predictive distributions. For
countries in a subregion where none of the countries had data, the in-
cidence was imputed as 10,000 random draws from a log-Normal dis-
tribution reflecting a "random" country within a "random" subregion,
with the uncertainty interval describing the variability between and
within regions. For countries in a subregion where at least one of the
other countries had data, the incidence was imputed as 10,000 random
draws from a log-Normal distribution reflecting a "random" country
within the concerned subregion, with the uncertainty interval de-
scribing the variability within regions.

2.7. Disability-adjusted life years

The case fatality rate of ID was assumed to be zero, therefore only
years lived with disability contributed to the DALYs associated with
prenatal MeHg exposure. Years lived with disability for a given health
state are given by the product of the number of incident cases with the
health state's duration and disability weight. In this study, the two
considered health states were mild and moderate ID. The age-of-onset
of MeHg-associated ID was assumed to be zero (i.e., birth), and the
disease was assumed to be life-long; the duration was therefore given by
the life expectancy at age of birth. Life expectancies at birth by country
for the year 2015 were derived from the 2017 revision of the United
Nations World Population Prospects (https://esa.un.org/unpd/wpp/
Download/Standard/Population/). Disability weights reflect on a
scale from 0 to 1 the relative reduction in quality of life associated with
the health state. The WHO Global Health Estimates disability weights
for ID were used: 0.127 for mild ID and 0.293 for moderate ID (World
Health Organization, 2017).

The DALY calculations were implemented in a probabilistic frame-
work, using 10,000 Monte Carlo simulations to propagate uncertainty
from the incidence estimation process (Devleesschauwer et al., 2015).
The resulting uncertainty distributions were summarized by their
median and a 95% uncertainty interval defined as the distribution's
2.5th and 97.5th percentile. As for incidence, country-level DALY es-
timates were aggregated into global, regional, and subregional esti-
mates and presented as such. Population estimates for the year 2015
from the United Nations World Population Prospects 2017 Revision
were used to calculate incidence and DALY rates per 100,000 popula-
tion.

3. Results

The median estimates of the numbers of incident cases of MeHg-
associated ID by each of the 14 considered subregions and the corre-
sponding 95% uncertainty intervals are displayed in Table 1. These
estimates include only mild and moderate ID, as estimates of the
numbers of severe and profound ID associated with MeHg were negli-
gible. Globally, the number of cases of MeHg-associated mild ID greatly
exceeded the number of cases of moderate ID. Within WPR, the number
of mild ID cases exceeded the number of moderate cases by more than
20-fold.

Table 2 presents the median rates per 100,000 population sepa-
rately for mild ID and moderate ID. Within AMR, the range of the rate
of MeHg-associated intellectual disability was almost an order of
magnitude (0.7 and 6.0 per 100,000 for AMR A and AMR D, respec-
tively). The median rate per 100,000 of mild and moderate ID com-
bined was ≥ 5 cases per 100,000 in AFR D, AMR D, and WPR B.

Table 3 shows the DALYs associated with MeHg-associated ID.
Globally, the median estimate of the total was 1,963,869. As would be
expected from the numbers of incident cases, the WPR B subregion
made the largest contribution to the global total, accounting for more

than one third of global DALYs. However, the number of DALYs per
100,000 population was greatest in the AMR D subregion, exceeding by
approximately 8-fold the DALYs per 100,000 population in the sub-
region with the lowest number (AMR A).

4. Discussion

The major findings of these analyses are that, worldwide, prenatal
exposure to MeHg accounts for nearly one quarter of a million incident
cases of intellectual disability each year, with the vast majority being
cases of mild ID (i.e., 50 < IQ<70). These cases account for nearly 2
million DALYs. To place this in context, in the Global Burden of Disease
(GBD), 2017 study, the global prevalence of developmental intellectual
disability in 2015 was calculated to be approximately 190 million cases,
resulting in nearly 25 million DALYs (GBD 2017 Disease and Injury
Incidence and Prevalence Collaborators, 2018). Estimates for MeHg-
associated ID are however not available from the GBD.

The variability among subregions with respect to the total number
of DALYs is substantial with the largest contribution to the DALY total
coming from countries in the WPR B subregion (Cambodia, China, Cook
Islands, Fiji, Kiribati, Lao People's Democratic Republic, Malaysia,
Marshall Islands, Micronesia (Federated States of), Mongolia, Nauru,
Niue, Palau, Papua New Guinea, Philippines, Republic of Korea, Samoa,
Solomon Islands, Tonga, Tuvalu, Vanuatu, Viet Nam). This is however
in part a reflection of the size of the population in WPR B. When DALYs
are expressed on a per capita basis, however, it is countries in the AMR
D subregion, consisting of Bolivia, Ecuador, Guatemala, Haiti,
Nicaragua, and Peru, that bear the greatest burden of MeHg-associated
ID.

Our findings illustrate the importance of conducting the analyses at
the subregion level. For both incident case rate and DALYs, the lowest
and the highest estimates were for subregions of the Americas making
the overall estimates for the Americas region as a whole misleading.

It is important to acknowledge the limitations of estimations of
disease burden. These limitations pertain to assumptions and decisions
made at each step of the estimation process.

The data on mercury biomarker concentration was based on na-
tionally-representative sampling for only three countries (USA,
Republic of Korea, Germany). For some countries large birth cohort
studies were available (New Zealand, Faroe Islands, Seychelles Islands),
and the distributions of hair mercury concentrations in those cohorts
are likely to be good proxies for those that would be obtained in a
nationally-representative sample. For each country, we selected the
study that seemed to provide data most representative of the exposures
within its population, but this was likely more successful for some
countries than for others.

Data on biomarker concentrations in a country's population did not
always include the concentrations specifically in pregnant women, the
population subgroup of greatest concern with respect to MeHg devel-
opmental neurotoxicity. In such cases, it was necessary to rely on proxy
measures of hair concentration during pregnancy that vary in their
suitability, such as hair or blood mercury biomarker concentrations in
all adult women or in adult men. Standard conversion factors were
applied in translating proxy measures into hair mercury concentrations.
These factors necessarily involve some error. Although a ratio of 250:1
is routinely used in risk assessments to convert a hair mercury con-
centration to a blood mercury concentration, values as high as 344 have
been reported (Yaginuma-Sakurai et al., 2012).

When suitable data for a country were not available, they were
imputed using mercury biomarker concentrations measured in another
country in the same subregion or, failing that, from data at the global
level. An alternative strategy would have been to base the imputation
on a country within the same Global Environmental Monitoring System
(GEMS)/food consumption database (www.who.int/nutrition/
landscape_analysis/nlis_gem_food/en). Although the GEMS classifica-
tion system groups countries with similar consumption patterns, it is
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based on more than 60 food categories, some of which are informative
with regard to intake of MeHg (e.g., cereal grains and flours, marine
fish) but most of which are not (e.g., fruiting vegetables, roots and
tubers, milks, sugars). Furthermore, because of the greater number of
clusters within the GEMS classification system, there would be a greater
number of clusters without data, increasing the overall uncertainty.

Data for some countries were limited to mercury biomarker con-
centrations measured in population subgroups suspected of having high
exposures. For example, many of the studies conducted in South
American countries, for example, focused on people living in areas in
which artisanal and small scale gold mining (ASGM) is conducted
(Gibb, O'Leary, 2014). Rather than considering the individuals sampled
to be representative of the entire population, we used data from the
referent groups assembled for these studies or studies of individuals
who, based on geography, were not likely to be impacted directly by
ASGM activities. However, population subgroups exposed to ASGM are
likely to be affected disproportionately by MeHg and a failure to con-
sider them in estimating the burden of disease within a country in

which such ASGM is common would result in an underestimate. The
number of individuals directly involved in ASGM is 10–15 million
worldwide, including 3 million women and children, mostly in Africa,
Asia, and South America (United Nations Environment Programme,
2013). The number exposed collaterally to MeHg dispersed as a result
of these activities is likely to be many-fold higher.

Impairment of children's cognitive development is generally con-
sidered the most sensitive indicator of MeHg toxicity in humans, but it
is possible that a greater burden of disease is associated with some other
endpoint, such as cardiovascular toxicity (Roman et al., 2011).

The method for estimating burden of disease requires that endpoints
be defined categorically rather than dimensionally. In the case of ID, it
is assumed that no burden accrues unless Full-Scale IQ is reduced, as a
result of exposure to MeHg, to a value below 70. For instance, a de-
crease in IQ from 90 to 89 is detrimental, but it would not be an in-
crease in disease burden simply because it does not increase ID
(IQ<70). Studies of many chronic disease risk factors, however, show
that, at a population level, burden accrues even at values below those
used to diagnose clinical disease. For example, the positive relationship
between blood pressure and risk of ischemic heart disease is evident
even at systolic and diastolic values below 140 and 90mmHg, respec-
tively (Lewington et al., 2002). Similarly, it is not only when IQ is re-
duced to below 70 that an individual's disease burden increases. In cost-
benefit analyses based on Full-Scale IQ, for example, monetary costs are
assigned to each IQ point lost, regardless of whether the final IQ score is
below or above 70 (e.g., Grosse et al., 2002). Our calculations therefore
likely underestimate the true health burden associated with MeHg (Sly
et al., 2016). In a similar vein, Salkever (2014) reports that the IQ
impacts from lead exposure are understated.

For consistency with the WHO estimates of the global burden of
foodborne disease, the disability weights used in this study were
adopted from the WHO Global Health Estimates study (World Health
Organization, 2017). Of note, the disability weights for intellectual
disability in the WHO study are substantially higher than the weights
used in the GBD study (Salomon et al., 2015), i.e., 0.127 vs 0.043 for
mild ID, and 0.293 vs 0.100 for moderate ID. Applying the GBD weights
would thus have resulted in a lower DALY estimate of around 670,000
DALYs.

We assumed that the relationship between maternal hair mercury
concentration and IQ is linear over the entire range of hair mercury
levels, and, furthermore, the same dose-response relationship exists in
all countries. Social factors do not appear to modify this relationship

Table 1
Estimated number of incident cases (median and 95% uncertainty interval) of MeHg-associated intellectual disability (ID) by region and subregion, 2015.

Region Mild ID Moderate ID Total

Africa (AFR) 41,235 (6965–261,750) 4064 (2325–7204) 45,306 (9276–268,911)
AFR D 21,568 (3858–133,016) 1993 (1165–3480) 23,553 (5018–136,462)
AFR E 19,654 (3070–128,734) 2073 (1161–3727) 21,726 (4230–132,462)

America (AMR) 23,869 (8632–55,527) 1575 (677–3342) 25,482 (9301–58,851)
AMR A 2320 (770–5410) 418 (135–994) 2740 (912–6362)
AMR B 15,700 (5585–35,887) 919 (392–1956) 16,616 (5983–37,740)
AMR D 5677 (2072–15,963) 239 (134–417) 5920 (2209–16,376)

Eastern Mediterranean (EMR) 19,999 (6453–93,035) 1887 (1134–3103) 21,939 (7601–96,318)
EMR B 4746 (1774–12,565) 337 (169–651) 5102 (1943–13,120)
EMR D 15,082 (4207–81,021) 1542 (934–2559) 16,647 (5152–83,474)

Europe (EUR) 11,174 (4135–29,451) 1140 (536–2291) 12,370 (4671–31,375)
EUR A 5828 (2117–13,423) 475 (193–1030) 6307 (2298–14,395)
EUR B 3166 (1069–13,638) 380 (214–659) 3556 (1286–14,141)
EUR C 1901 (688–4396) 286 (108–641) 2189 (795–5015)

Southeast Asia (SEAR) 22,718 (8023–52,049) 3391 (1193–7833) 26,154 (9271–59,646)
SEAR B 6267 (2095–14,589) 563 (195–1309) 6834 (2289–15,832)
SEAR D 16,468 (5848–38,027) 2829 (997–6526) 19,289 (6913–43,989)

Western Pacific (WPR) 81,823 (27,961–188,066) 3827 (1470–8523) 85,643 (29,470–196,380)
WPR A 2199 (805–5572) 147 (73–287) 2349 (878–5826)
WPR B 79,495 (27,218–182,893) 3679 (1395–8237) 83,168 (28,632–191,203)

World 210,074 (78,752–607,928) 16,038 (8435–29,701) 226,655 (87,386–633,509)

Table 2
Estimated incidence rates per 100,000 population (median and 95% un-
certainty interval) of MeHg-associated intellectual disability (ID) by region and
subregion, 2015.

Region Mild ID Moderate ID Total

Africa (AFR) 4 (0.7–26) 0.4 (0.2–0.7) 5 (0.9–27)
AFR D 5 (0.8–28) 0.4 (0.2–0.7) 5 (1–29)
AFR E 4 (0.6–25) 0.4 (0.2–0.7) 4 (0.8–26)

America (AMR) 2 (0.9–6) 0.2 (0.07–0.3) 3 (0.9–6)
AMR A 0.6 (0.2–1) 0.1 (0.04–0.3) 0.7 (0.2–2)
AMR B 3 (1–7) 0.2 (0.07–0.4) 3 (1–7)
AMR D 6 (2–17) 0.3 (0.1–0.5) 6 (2–18)

Eastern Mediterranean (EMR) 3 (1–14) 0.3 (0.2–0.5) 3 (1–15)
EMR B 3 (1–7) 0.2 (0.09–0.4) 3 (1–7)
EMR D 3 (0.9–17) 0.3 (0.2–0.5) 4 (1–18)

Europe (EUR) 1 (0.5–3) 0.1 (0.06–0.3) 1 (0.5–3)
EUR A 1 (0.5–3) 0.1 (0.04–0.2) 1 (0.5–3)
EUR B 1 (0.5–6) 0.2 (0.09–0.3) 2 (0.5–6)
EUR C 0.8 (0.3–2) 0.1 (0.05–0.3) 0.9 (0.3–2)

Southeast Asia (SEAR) 1 (0.4–3) 0.2 (0.06–0.4) 1 (0.5–3)
SEAR B 2 (0.6–4) 0.2 (0.06–0.4) 2 (0.7–5)
SEAR D 1 (0.4–2) 0.2 (0.06–0.4) 1 (0.4–3)

Western Pacific (WPR) 4 (1–10) 0.2 (0.08–0.5) 5 (2–10)
WPR A 1 (0.5–3) 0.09 (0.04–0.2) 1 (0.5–4)
WPR B 5 (2–11) 0.2 (0.08–0.5) 5 (2–11)

World 3 (1–8) 0.2 (0.1–0.4) 3 (1–9)
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significantly (Davidson et al., 1999, 2004), though certain genetic
polymorphisms might (Julvez et al., 2013). Because we lacked country-
specific data on the distributions of IQ scores, we assumed that the
distributions have the same mean and standard deviation in all coun-
tries.

We used the dose-effect relationship reported by Axelrad et al.
(2007) to estimate incidence rates of ID, but recent evidence suggests
that the slope is underestimated unless the potentially beneficial impact
of seafood consumption on child development is taken into account
(Oken et al., 2005, 2008; Budtz-Jorgensen et al., 2007; Strain et al.,
2008; Lederman et al., 2008). Axelrad et al. (2007) did not take ne-
gative confounding into account (Choi et al., 2008) so the present
analysis might underestimate the disease burden associated with MeHg-
associated ID.

5. Conclusion

In conclusion, the burden of disease associated with prenatal ex-
posure to MeHg varies considerably from one subregion to another. In
absolute terms, the greatest burden is borne by countries in WPR B,
while the greatest per capita burden is borne by countries in AMR D.
The priority given to reducing this burden in light of other health needs
can be expected to vary considerably by subregion.
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