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This Hints and Kinks paper starts from the simple but well-

known premise that ‘‘what gets measured, gets done’’,

which we would like to extend into ‘‘what gets measured

well, gets done well’’, and finally to ‘‘what does not get

measured well could still get done well, if appropriate

analytical methods are used’’.

Imagine assessing the prevalence of an infectious dis-

ease in a population, where the presence of disease is

determined by a diagnostic test. For each tested individual,

the diagnostic test result gives a ‘‘signal’’ that does not

necessarily match its true infection status. It is well known

that false positive and false negative results can arise when

using diagnostic tests, for example producing a positive

result in a non-case owing to a factor unrelated to the

infection. On a population level, the prevalence as

determined by the diagnostic test will thus only be an

‘‘apparent’’ prevalence, which will, to some extent, differ

from the ‘‘true’’ prevalence. This problem of diagnostic test

misclassification is a special case of information bias. We

will describe the general problem and provide suggestions

for adjusting for misclassification bias in practice.

The performance of a diagnostic test is typically

parameterized by two quantities, the sensitivity and the

specificity, each describing the capacity of the test to reflect

the unknown ‘‘true’’ disease status. To define these two

quantities, the following notation is introduced:

• infection status D: D = 1: infected, D = 0: not infected

• diagnostic test result Y: Y = 1: positive, Y = 0:

negative

Combining each possible value of infection status and

diagnostic test result leads to the cross table presented as

Table 1.

In this table, the four possible combinations of infection

status and diagnostic test result are denoted as follows:

• TP = True positive: truly infected individual with a

positive test result

• TN = True negative: truly non-infected individual with

a negative test result

• FP = False positive: truly non-infected individual with

a positive test result

• FN = False negative: truly infected individual with a

negative test result

Following the same notation, the ‘‘true’’ prevalence,

denoted p, and the ‘‘apparent’’ prevalence, denoted p, are

given by:

• True prevalence (p): P(D = 1) = (TP ? FN)/(TP ?

FP ? FN ? TN)
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• Apparent prevalence (p): P(Y = 1) = (TP ? FP)/

(TP ? FP ? FN ? TN)

The test sensitivity (SE) equals the probability that a

truly infected individual will test positive, whereas the test

specificity (SP) equals the probability that a truly non-

infected individual will test negative. With ‘‘|’’ meaning

conditional on (or ‘‘given’’), SE and SP can be formally

defined as:

• Test sensitivity (SE): P(Y = 1 | D = 1) = TP/(TP ? FN)

• Test specificity (SP): P(Y = 0 | D = 0) = TN/(FP ? TN)

By plugging in the above definitions for p, p, SE and SP,

and setting the total population to 100 % (i.e., TP ?

FP ? FN ? TN = 1), Table 1 may be rewritten as Table 2.

From Table 2, it can be seen that the ‘‘apparent’’ prev-

alence (p) is related to the ‘‘true’’ prevalence (p) through

the formula:

p ¼ p � SE þ 1 � pð Þ � 1 � SPð Þ ð1Þ

If the applied diagnostic test has perfect SE and SP, both

equal to 100 %, Eq. (1) reduces to p = p. Indeed, as every

infected individual will yield a positive test result and

every non-infected individual a negative test result, the

‘‘apparent’’ prevalence (p) equals the ‘‘true’’ prevalence

(p). In this paper, we call such a diagnostic test a gold

standard test, although some researchers will use that term

to denote the best reference test, even if its properties are

imperfect.

Gold standard tests are rarely available, however, as

most diagnostic tests are imperfect (SE = 100 % and/or

SP = 100 %). To illustrate the effect of imperfect test

characteristics on the ‘‘apparent’’ prevalence, let us sup-

pose we wish to evaluate a population where the ‘‘true’’

infection prevalence equals 20 %. If the applied test has a

less-than-perfect sensitivity, say 80 %, then p will equal

20 % 9 80 % ? (1-20 %) 9 (1-100 %) = 16 %. The

‘‘apparent’’ prevalence will thus underestimate the ‘‘true’’

prevalence. Otherwise, if the test has a less-than-perfect

specificity, say 90 %, then p will equal 20 % 9 100 % ?

(1-20 %) 9 (1-90 %) = 28 %. In this case, the ‘‘appar-

ent’’ prevalence will overestimate the ‘‘true’’ prevalence. If

both SE and SP are suboptimal, the ‘‘apparent’’ prevalence

will be a result of both the false negative and false positive

results. For example, combining both examples yields

p = 20 % 9 80 % ? (1-20 %) 9 (1-90 %) = 24 %.

The ‘‘true’’ infection prevalence, which we assumed to

be 20 % in the above examples, will, of course, not be

known in practical situations—else there would be no need

to estimate the prevalence in the first place. In practice, the

‘‘true’’ prevalence is estimated from the ‘‘apparent’’ prev-

alence. Through algebraic manipulation of Eq. (1), we may

obtain the Rogan–Gladen adjusted estimator of ‘‘true’’

prevalence (Rogan and Gladen 1978):

p ¼ p þ SP � 1

SE þ SP � 1
ð2Þ

Plugging in the ‘‘apparent’’ prevalence from our last

example (24 %), together with the (presumed) known

values of SE and SP, the ‘‘true’’ prevalence becomes:

24% þ 90% � 1

80% þ 90% � 1
¼ 20%

The Rogan–Gladen estimator, however, shows two

important drawbacks. First, if the observed, ‘‘apparent’’

prevalence is lower than the probability of observing a

false positive result (1-SP), the Rogan–Gladen estimate

will become negative, which is of course implausible. As

an example, suppose we obtained in our previous

illustration an apparent prevalence of 5 % instead of

24 %. Plugging in this value into Eq. (2) would lead to:

5%þ 90%� 1

80% þ 90% � 1
¼ �48%

In each of the preceding examples, it was furthermore

assumed that the values for SE and SP were fixed and

known, for example provided by the test manufacturer.

However, local factors, such as the presence of cross-

reacting organisms, low infection pressure or the

experience of the lab technicians can influence the SE or

SP of a test. The characteristics of the test in the specific

(field) conditions where the test will actually be used may

Table 1 Infection status by diagnostic test result cross table, in terms

of TP, TN, FP, FN

Diagnostic test result Infection status

D = 1 D = 0

Y = 1 TP FP TP ? FP

Y = 0 FN TN FN ? TN

TP ? FN FP ? TN TP ? FP ? FN ? TN

D (infection status) = 1: infected, D = 0: not infected; Y (diagnostic

test result) = 1: positive, Y = 0: negative

TP True positive, TN True negative, FP False positive, FN False

negative

Table 2 Infection status by diagnostic test result cross table, in terms

of p, p, SE and SP

Diagnostic test result Infection status

D = 1 D = 0

Y = 1 p 9 SE (1-p) 9 (1-SP) p

Y = 0 p 9 (1-SE) (1-p) 9 SP 1-p

p 1-p 1

p true (informed) prevalence, p apparent prevalence, SE test sensi-

tivity, SP test specificity
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therefore differ from those obtained under the ‘‘ideal’’

laboratory conditions (with e.g., no cross-reactions due to

other organisms). Therefore, context-specific test sensitivities

and specificities will have to be used. These are, however, not

known, and cannot be identified through the aforementioned

Rogan–Gladen equation. Indeed, it is impossible to calculate

three unknown quantities (p, SE and SP), from just one

equation. Under certain conditions, using several diagnostic

tests may partly solve this problem, but most often external

information on the diagnostic test characteristics will be

needed (Berkvens et al. 2006).

There are two statistical options for incorporating this

external information in the analysis, originating from the

frequentist or the Bayesian philosophy. In a frequentist

analysis, the problem can in general only be circumvented by

fixing the values of certain parameters. In the case at hand,

this would mean setting the SE and SP equal to fixed, known

values, as was done in the preceding illustrations. However,

as highlighted in the foregoing paragraph, this is not optimal,

as the SE and SP are context-specific and typically unknown,

and should consequently be treated as random variables, not

as fixed parameters. In the Bayesian philosophy, population

parameters, including the SE and SP, are assumed to have

intrinsic probability distributions, reflecting the uncertainty

in their parameter values. The Bayesian approach further

allows combining the observed field data (i.e., p) with any

external (a priori) information on SE and SP within a single

model. This external information can be historical informa-

tion from experiments similar or related to the one under

study or, in the absence of data, even beliefs of the investi-

gators (e.g., expert opinions). The information on the test

characteristics is thus not fixed anymore but expressed as a

distribution or a range of values. Combining test results with

a priori information on the test characteristics results in an a

posteriori probability distribution of the prevalence.

If good prior information is available, the Bayesian

method can thus flexibly account for parameter uncertainty

in SE and SP while estimating p. Moreover, the Bayesian

method makes it impossible to obtain negative values for p,

since it is based on the transition from the true prevalence

to apparent prevalence (i.e., Eq. (1)). This is further illus-

trated in Appendix 1, where the prevalence estimated as

negative with the Rogan–Gladen estimator, is estimated as

0.48 %. However, it should also be clear that the results of

the Bayesian method may strongly depend on the analysts

summary of the available evidence to date about the sen-

sitivity and specificity, expressed in the a priori

distributions for SE and SP. Researchers should therefore

be fully transparent about the distributions used in their

models and about the methods used to derive these distri-

butions. Estimating the posterior across the range of

plausible values based on the evidence to date, may

therefore help to assess the robustness of the estimates.

There are surprisingly few papers using the Bayesian

approach for dealing with prevalence estimations in human

medicine. The paper on malaria prevalence estimations in

Peru, Vietnam and Cambodia (Speybroeck et al. 2011) was

one of the first, if not the first, assessing the ‘‘true’’ malaria

prevalence in a Bayesian manner. Other examples of using

a Bayesian approach in estimating the prevalence are

reported for strongyloidiasis, hepatitis E, and HIV infection

(Joseph et al. 1995; Bouwknegt et al. 2008; Liu et al.

2011). Different ways to define expert opinions and to

combine priors with the available data exist (Branscum

et al. 2005; Berkvens et al. 2006; Engel et al. 2006).

The freeware programs WinBUGS (Lunn et al. 2000)

and OpenBUGS (Lunn et al. 2009) are often used for

Bayesian modelling. Appendix 1 provides an illustrative

BUGS model for obtaining the ‘‘true’’ prevalence from an

‘‘apparent’’ prevalence based on individual samples. More

code for assessing individual sample-based prevalences can

be found in Berkvens et al. (2006), among others. Spe-

ybroeck et al. (2012) further provide code for obtaining the

‘‘true’’ prevalence from an ‘‘apparent’’ prevalence based on

pooled samples, highlighting the flexibility and ease of

extension of the Bayesian method.

In conclusion, if classification errors in the reference test

are ignored, serious bias may be introduced in the assess-

ment of the prevalence, although this is not always

articulated as such. A Bayesian approach can be useful in

this context, because it allows flexibly combining the

available ‘‘prior’’ knowledge on diagnostic test character-

istics with new data. Importantly, incorrect prior

information can lead to unreliable posterior estimates. The

use of several diagnostic tests may decrease the risk of

errors, but most often the use of external information on the

diagnostic test characteristics cannot be avoided. A rea-

sonable option may therefore be to report results under

different scenarios of test characteristics, and to be fully

transparent about the applied test characteristics. In such a

context, the term ‘‘true’’ prevalence may also be subopti-

mal, and we therefore prefer to call the obtained prevalence

an ‘‘informed’’ prevalence. The use of such an ‘‘informed’’

estimation may avoid biased estimation of disease burden

and may allow using surveillance systems more effectively

when assessing for example the effects of interventions.

Appendix 1: Bayesian approach for estimating ‘‘true’’

prevalence from ‘‘apparent’’ prevalence

To introduce the Bayesian approach for estimating ‘‘true’’

prevalence (pi) from ‘‘apparent’’ prevalence (p), we build

on the illustrations from the main text. In these examples,

we had assumed a test sensitivity (SE) of 80 % and a test

specificity (SP) of 90 %. We then estimated ‘‘true’’
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prevalence from an ‘‘apparent’’ prevalence of 24 and 5 %,

using the Rogan–Gladen estimator (Eq. (2)). This resulted

in estimates of, respectively, 20 and -48 %.

To parameterize the Bayesian model, we need infor-

mation on the sample size (n), the number of positive test

results (x), and an a priori probability distribution for

‘‘true’’ prevalence (pi). As a first illustration, we will

continue to assume that SE and SP are known, fixed values

(Model 1). This assumption will be relaxed in a further

illustration (Model 2).

For simplicity, we will assume that our sample size was

500. An ‘‘apparent’’ prevalence of 24 % would thus have

resulted from observing 120 positive test results. Likewise,

an ‘‘apparent’’ prevalence of 5 % would have resulted from

observing 25 positive results. As prior probability distri-

bution for ‘‘true’’ prevalence, we will apply a uniform

distribution ranging from 0 to 100 %. This is a common

choice, as it expresses our belief before having observed

any data, that the ‘‘true’’ prevalence can take any possible

value and that each possible value is equally likely.

This information can now be used to establish the fol-

lowing Bayesian model:

Model 1 Bayesian estimation of true prevalence

from apparent prevalence, based on fixed sensitivity

and specificity; comments, denoted by the ‘‘#’’ symbol,

translate the code in words

We fitted the model in WinBUGS using two chains, each

containing 6,000 samples, of which the first 1,000 were

discarded as ‘‘burn-in’’. Typical output is presented in

Table 3. As expected, the Bayesian model succeeded in

yielding only positive values, thus providing a useful

‘‘true’’ prevalence estimate for our second case.

The Bayesian approach makes it possible to flexibly

account for uncertainty in the values for SE and SP. Instead

of assuming fixed values, we assume in Bayesian model 2

that SE can take any possible value between 70 and 90 %,

and that SP can take any possible value between 85 and

95 %. For the sake of comparability, these values were

chosen so that their means would correspond to the fixed

values applied before.

Model 2 Bayesian estimation of true prevalence

from apparent prevalence, based on stochastic

sensitivity and specificity; comments, denoted

by the ‘‘#’’ symbol, translate the code in words

Again, the model was fitted in WinBUGS using two chains,

each containing 1,000 ‘‘burn-in’’ samples and 5,000

retained samples. Typical (numerical and graphical) output

is presented in Table 4. The results are similar to those

obtained by Model 1, but show wider credibility intervals,

owing to the additional uncertainty introduced by defining

SE and SP as stochastic nodes.
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